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To describe the flow of a viscous film on the surface of a nonviscous liquid [i] pro- 
posed a system of equations (notation same as [i]) 

OH OH% dv i OS~ 
o-'F + o~ h =0'  oH d--F-= o~ h 

% k -$~ ( o~ "oz~~ k ovj o~ J] S~k = - -  PSik + 3~tH o:. ~ 8i~, + F,H + ~h  

/----p ( l - -p /px)  g H2/2,  i, 1, k = l ,  2. ( ! )  

In the ~xpression for the stress tensor Sik the first term is the net hydrostatic pres- 
sure over film thickness with consideration of the immersion of the film into the supporting 
liquid~ the ~econd =erm describes viscous forces related to film tension; and the third cor- 
responds to shear defo~ion. 

Let a film with free edges flow in the direction of the Ox axis, which we assume to be 
an axis of symmetry. We also assume that the film thickness H, longitudinal velocity u, and 
width W are functions of time and slowly varying functions of coordinate x. This allows one- 
dimensional description of the flow. On the lateral edges y =-+W/2 let there act forces F = 
(Fx/2, Fy), F' = (Fx/2 , --Fy), per unit edge length, symmetric about the x axis. Then the 
film is in tension in the transverse direction due to the forces Fy and --Fy, while in the 
longitudinal direction there acts on both edges a net force F x. ApplyinF. to system (i) the 
same procedure by Which it itself was derived from the three-dimensional Navier--Stokes equa- 
tions, we obtain a system for H, W, u as functions of the variables x, t: 

OHW/Ot  + OHWu/Ox  = O, 

du p Ou F~ F~: 
pHW. - s  ~ W --y+3~H-g-~+---U+ 8 ~ +F. ,  

aw w [ ~ ow ] w o~ 
d---f- = -T~ff  f ~,, -t- p -i-, .--g-- oz j 2 oz " 

In the momentum equation viscous effects are considered by the term 3~}[WOu/3x. As is 
well known, for extension flows the proportionality coefficient between viscous stresses and 
deformation rate is equal to 3~ [2]. In the mathematical description of such flows, which 
are found in problems of shaping various objects, it is usually assumed that no forces act 
on the lateral surface of the object and the configuration of its cross section does not 
change (see, for example, [3]). In the present case the changes in film thickness and width 
follow different la~,So 

The forces Fx, Fy may be found from system (2). The result may be interpreted as a solu- 
tion of the identification problem, where the observed motion is used to determine the forces 
acting, or the control problem, where those forces are found, which must be applied to the 
film to obtain the desired flow regime. 

For steady state flows the liquid volume flow rate will be constant: Q =HWu. Let Q >0, 
so that u >0. Then we obtain the following expressions for the forces: 

d { 4~tHW.~xdu dW Fx = ~pQu q- W p  - -  - -  2txHu dx ), 

du Fx dW i,, u = 4~ttfu clw ~_ 21xH "~z - -  p 
W dx 4 dx 
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For a film of constant width, if we neglect inertia and hydrostatic pressure, the expressions 
take on the simple form 

d [ t d l n u \  2[aQ dints 
w �9 

Within the one-dimensional model we will consider the flow of a film when there acts 
orthogonally to its edge a force --y, equal to the spreading coefficient [i], while F x =yOW/ 
3x, Fy =--y. Introducing the dimensionless film thickness h =H/H. (where H. is the equilib- 
rium thickness) and the constant ~ = pg(l -- p/px)ll./8~, we rewrite system (2) in the form 

(v =Wp) 

,ool OhWot ~- OhWUox -~ O, dWdt -- iV ( h 2 - - ] ) - -  2 OxJ' (3) 

{ [ o j} h.W 7/_du = 0-7') W v  - -  2• (h" - -  t)  + 3h ~ . 

A s y s t e m  of  e q u a t i o n s  p r a c t i c a l l y  e q u i v a l e n t  to  Eq. (3) f o r  f lows  d e v e l o p i n g  under  the  
a c t i o n  o f  a l o n g i t u d i n a l  e x t e n s i v e  f o r c e  was s o l v e d  n u m e r i c a l l y  i n  [ 4 ] ,  which p r e s e n t e d  a 
compar i son  o f  t he  c a l c u l a t i o n  r e s u l t s  w i t h  e x p e r i m e n t a l  d a t a .  For s low s t e a d y  s t a t e  f lows  
Eq. (3) may be s o l v e d  a n a l y t i c a l l y .  The l a s t  e q u a t i o n  o f  the  s y s t e m  has an i n t e g r a l  

W ~ [ - - 2 •  t) 4-3t~u/Oxl = C, 

I f  e x t e r n a l  e x t e n s i v e  f o r c e s  a r e  a b s e n t ,  then  h §  Ou/~x § as  x §  hence  C =0 .  The 
r e m a i n i n g  e q u a t i o n s  o f  sy s t em (3) t ake  on the  form 

d h / d t  4 -  (4•  2 - -  t) = 0, d W / d t  = ( 2 •  - -  i). 

At x =0 l e t  a f i l m  of  wid th  Wo and t h i c k n e s s  ho move w i t h  a v e l o c i t y  Uo. A f t e r  a t ime 
interval I: =t -- to the thickness of the film element with coordinate x =0 at time to will 
be 

h(x)  = i -!- 2 / [C*~/3(ho  + t ) / (ho  - -  i) -- i ], 

while its width and position are given by 

= W o ( h o / h ( 9 )  ~, ~ ( 0  z~o , w = t' r  
e 

As x § the film width tends to the value Wo h~o. 

In considering effects produced by transverse extensive forces we will assume the film 
to be very viscous and neglect hydrostatic pressure and inertial forces. In the steady state 

at F x =0 from Eq. (2) we obtain 

3 ~ H W d u / d x  + W F u / 2  - C. (4) 

~le constant C is defined by the boundary conditions. It is equal to the longitudinal force 
applied to the film section at the end x =L, if at that point Fy =0. With consideration of 
the relationship Q =HWu =HoWouo, from Eq. (4) and the last equation of system (2) we obtain 
an equation for W: 
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dW/dx  ~- CW/(6~tQ) - FuW2/(3~tQ ) = O. (5) 

For constant Fy and ~ this equation has a solution (at a =C/(6~Q), b =2FyWo/C) 

W := [~ / [b  -~- (I - -  b)eax]. (6) 

The r e m a i n i n g  q u a n t i t i e s  a r e  g i v e n  by  

u = u o V b  ~- (t - -  b)e ax e 3a~2, H = Ho ]/ 'b ~ (1 - -  b )e~e  -3~/2. (7) 

At b =i the film width remains constant, at b <i it decreases with increase in x, and at 
b >I it increases, tending at infinity to x, =(i/a)in[b/(b -- i)] (see Fig. I). We will 
note two limiting cases. When transverse forces are small, 

u = uoe ~=, H/Ho = W/Wo = V u - ~ .  (8) 

When longitudinal forces are small, 

W = Wd(l - -  FuWox/3~Q ), u/u o = H / H o  = VW---~.  (9) 

Us ing  Eq. ( 5 ) ,  t h e  a c t i o n  on t h e  f i l m  o f  a t r a n s v e r s e  f o r c e  Fy = f 6 ( x  - -  Xo) can  be d e t e r m i n e d .  
Denoting W• =W(xo 2 0 ) ,  f o r  t h e  change  i n  w i d t h  we have  1 / ~ _  - -  f / 3 v Q ,  w h i l e  f o r  t he  
r e m a i n i n g  q u a n t i t i e s  ( i n  s i m i l a r  n o t a t i o n )  u+/u_ =H+/I-L. =~W_/W+.  

We w i l l  c o n s i d e r  t h e  b e h a v i o r  o f  an e l e m e n t a r y  c y l i n d e r  o f  l e n g t h  ~ o f  v i s c o u s  m a t e r i a l  
u n d e r  t h e  a c t i o n  o f  e x t e n s i v e  f o r c e s  F ( t )  a p p l i e d  to  t h e  end f a c e s .  From the  e q u a t i o n s  

3~Sau/Ox = F, OulOx = (dl/dt)/1, lS  = loSo 
t 

(where  S i s  t h e  c r o s s - s e c t i o n a l  a r e a )  i t  f o l l o w s  t h a t  1 / l  = l / l o  - -  .f F d t / 3 ~ S o ~ o .  The c y ! i n -  
0 

d e r  e x p a n d s  t o  i n f i n i t y ,  ~ =~ ,  when i t  r e c e i v e s  a c r i t i c a l  i m p u l s e  P ,  =3~So,  i n d e p e n d e n t  o f  
i t s  o r i g i n a l  l e n g t h .  I t  c an  be  shoxcn t h a t  t h i s  p r i n c i p l e  d e t e r m i n e s  t he  p o s i t i o n  o f  t he  s i n -  
g u l a r  p o i n t  f o r  t h e  s o l u t i o n  o f  Eq. ( 9 ) ,  a s  w e l l  a s  t he  maximum p e r m i s s i b l e  v a l u e  o f  t r a n s -  
v e r s e  point force f. 

Although the steady state flow of Eq. (8) exists formally at all x, the length of a 
material element becomes infinite when it receives an impulse equal to 3~ per unit cross- 
sectional area, i.e., in fact such a flow can exist only over a finite interval of the axis 
Ox. Ale situation is the same in the problem of a film falling under the action of its own 
weight, which in essence coincides with the problem of a viscous jet [5]. 

If the film expands simultaneously in two directions, then although the relationship 
P, =3BSo is no longer valid, the order of magnitude of the critical impulse which destroys 
the film does not change. Thus, for flows of the type of Eqs. (6), (7) its maximum value 
will not exceed 4pSo. 
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